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ANATYSTS OF PLANE-STRESS FPROBLEMS WITH AXTAL
-SYMMETRY IN STRATN-HARDENTNG RANGE

By M. H. Lee Wu

SUMMARY

A simple method is developed to solve plane-stress problems with
axial symmetry in the strain-hardening range based on the deformation
theory of plastloity employing the finite-strain concept. The

‘equations defining the problems are first reduced to two simmlteneouns -

nonlinesr differential equetions. involving two dependent variables:

(a) the octahedral shear strain, and (b) a parameter indicating the
retlo of principal stresses. By multiplylng the loed and dividing the
radlus by an erbitrary constant, 1t is possible to solve these problems
without lteration for any value of the modified losd. The constant 1s
determined later by the houndary conditlon.

The method 1s applled to the cases of a c¢ircular membrane under
pressure, & rotating disk without and with a hole, and an infinite
plate with a circular hole. Two materisls, Tnconel X and 16-25-8, the
octehedral shear stress-strain relations of which do not fellow the
power law, are used. Distributions of ocotahedral shear strain, as well
ag of principal stresses and strains, are obtained. These results are
compared with the results of the same problems in the elastic range.
The veriatlon of load with meximum octahedrel shear strain of the mem-
ber is also investigated. . TTmw

The followlng resulits are obtained:
1. The ratios of the principal stresses remain essentlally con-

gtant during loading and consequently the deformation theory is appli-
cable to this group of problems.

2. In the plastic deformation, the distributions of the principal

strains, and of the octahedral shear strain, are less uniform then in
the elagtic case, although the dlstribubtions of the princlpal stresses
are more uniform. The stress concentration factor around the hols 1s
reduced with plastic deformetion, but & high straln concentration
factor occurs.

3. The deformation that can be accepted by the member before
fallure deperds mainly on the maximum octahedral shear strain of the
material.
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4. The added load that the member can sustain between the onset of
yilelding and fallure depends melinly upon the octahedral shear gstress-
strein relation of the meterial.

INTRODUCTION

In the deslgn of turblne rotors, it ls desirable to know the
detalled stress and straln distributlions in the strain-hardening range
and the amount of increase in load that can be sustained between the
onset of yielding and fallure, It 18 also desirable to know the effects
of a notch or a hole in a turbine rotor or other machine members that
are stressed In the strain-hardening range. If a member is thin, it can
be analyzed on the basis of plans stress. For problems of this type,
Nadal obtained solutions for ldeally plastic material in the cases of
the rotating disk, the thin plate with a hole, and the flat ring radially
stressed (references 1 and 2). For the case of materials having strain-
hardening characteristics, a solutlon of plane-stress problems has been
obtained by Gleyzal for the circular membrane under pressure (reference 3).
The concept of Infinitesimal strain was used and the soclution was obtalned
by an iterative procedure with a good filrst approximate solution. The
plastic laws were always satlisfled by using a chert given in reference 3.
In reference 4, a trial-and-error method is glven for rotating disk with
very smell plastic strain, in which the elastic stresses and strailns are
used as the first approximate valuss., ZExperimental investigation for the
high-gpeed rotating disk is made in reference 5; distributions of plastic
gtrains (logarithmic stralns) for different types of disk are measured.
Reference 6 experimentally investigates the burst charecteristics of rotat-
ing disks; stress at the center of disk 1s calculated by assuming that the
material behaves elastically at the burst speed; the average tangential
stress along the redius at burst speed 1s also calculated.

A simple method of solving plane-plastlic-stress problems with axial
symmetry employing the finlite straln concept in the straln-~hardening range
and based on the deformatlon theory of Hencky and Nadai (references 7 to
9), which 1s derived under the condition that the directlons and the
ratlos of the princlipal stresses remaln constant during loading, was
developed at the NACA Lewls leboratory end 1s presented herein. The
equations of equllibrium, strain, and plastic law are reduced to two
gimultaneous nonlinear differentiasl equations involving three variables,
one independent and two dependent, that can be integrated numerically to
any desired accuracy. These variables are the proportionate radial
distance, the octahedral shear strain, and a paramster o that Iindicates
the ratio of principal stresses. The magnitude of variation in calculated
vaelues of the parameter o wlth change in load directly indicates whether
the deformation theory is applicable to the problem.

The method developed is applied to: (1) a circular membrane under
pressure, in order to compare results obtained by thils method with that
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obtained by Gleyzal (reference 3); (2) rotating disks without and with a
circular central hole, in order to lnvestligate plastic deformation in

such disks and the effects of the hole; and (3) an infinite plate with a
circular hole or a flat ring radially stressed in order to investigate

the effects of the hole in the'strain-hardening range.

In the investigation of (2) and (3), two materials, Inconel X and
16-25-8, with different strain-hardening characteristlcs were used in
order to determine the effect of the octahedral shear stress-straln
curve on plastic deformation. The octahedral shear stress of these two

meterials 1s not a power function of the octahedral shear strain, so that

more general informstion can be obtailned. Distributions of stresses and
strains of the same problems in the slastlc range are also calculated for
purposes of comparison.

SYMBOIS .
The followlng symbols are used in this report:
raedius of hole
outside radius of membrane, rotating disk, or flat ring
outside redius of plate, very large'compared with radius a
instanteneous thickness of membrane, rotating disk, or plate
i initlal thickness -
arbltrary constant
pressure on nmembrane

redial coordinate

B d % B B 0 o @

]

arc length
n radlal displacement

W axlsl displacement

axisl coordinate -

3]

parameter indicating ratio of principal stresses
octahedral shear strain

logerithmic strain

angular coordinate

mess per unit volume -

Q D © m N 2

normal stress, normal force per unlt instantaneous area
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T octahedral shear stress

) angulaxr velocity

Subscripts:

b et radius b

c at radlus c

o at center, for case without hole or at radius a for case with

concentric cilrcular hole
1,2,3 principal dlrections in general

r,6,z principal directions in cylindrical coordinete system

STRESS -STRATN RELATTIONS IN PLASTIC DEFORMATION

The deformation theory of plasticity for ideally. plastic materlals
wes developed by Hencky from the theory of Saint Venent-Levy-Mises for.
the cases in which the directions and the ratios of principal stresses
remsin constant during loading (reference 7). Nadail extended the theory
to include materials having strain-hardening characteristics (refer-
ences 8 and 9). The conditions for the deformation theory have been

'emphasized by Nadal (reference 9, p. 209), Ilyushin (references 10 and
11), Prager (reference 12), end Drucker (reference 13). Experiments con-
ducted by Lessells and MacGregor (reference 14), Osgood (reference 15),
and others on thin tubes subjected to combined loads with the directlons
and the ratios of the princlpal stresses constent throughout the body and
remaining congtant during loading show that good resulis can be expected
from the deformatlon theory.

In more recent experiments on thin tubes by Fraenkel (reference 16)
and Davis and Parker (reference 17), it has been shown that even with
considerable variation of the ratio of principal stresses during loading,
the strains obbained from the experiments were in good agreement with
the strains predicted by use of the deformation theory. Further experi-
mentel investigation 1s needed to determine the extent to which the vari-
ation of ratios of principsl stresses is permissible. In case the vari-
ation 1s small (approximately 10 percent over the strain-hardening
 range), the deformation theory can, however, be expected to give good

results. : '

28¢T
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< In the present problems with axial symmebry, the directions of
tue axes of principal stress remalin fixed during loading and it seems
that the ratios of principal strains and of principal stresses may
also remain approximately constant. The deformation theory previously

3 discussed 1s therefore used. The stress-strain relations are then as
gi follows:
€ +€ + €3 =0 " (1)
0170z _ 02703 _ 03701 : ()
€l-€2 €2-€5 €3-€l _ ' :
T =71(7) (3)
where .
1/2
1 2 2 2
. T=3Z [(0‘1-62) + (02-03)° + (03'01)] (42)
1/2
2 2 2 2
« Y = z [(el-ez) + (52"":3) + (es.-el):] (4b)
From equations (1)} to (4b), the following relations are obtained:
1y -+ N
L7 [ L (oo )_
=37 |% "z O]
1y -1 N
& =3 T|% " F (0y+07)

For plane-stress problems Oz = 0, so that

V2

o 1/2
T =73 (63 -0. 0540,

) (s2)

> 1/2 '
7 y = ZJ; (elz+elez+<-:22) (5b)
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and
€i = %“'71: (Ol- %-02) (63)
€p = %‘-,—r?i (©,- %ol) (ep)
s =3 % [— z (01"021" = - (eg+ep) (6c)

When 04 and o, ere expressed in terms of €1 end €5, there is
obtained
T
(7)

02=2

{4

(2 5%¢)

EQUATTONS OF EQUILIBRIUM AND STRATN INVOLVING DISFLACEMENIS

Equations of equilibrium and equations of strain are derlved for
three plane-stress problems with axial symmetry. It is convenlent to
use cylindrical coordinates for these derivations; the principle
directions 1, 2, end 3 in the preceding eguations become radial,
circumferential, and axial directions, respectively. Because a large
deformation in the strain-hardening range willl be considered, the
concept that the change of dimenslon of an element is infiltesimal
compared with the original dimension of the element 1s not accurate
enough. Hence, the finite-strain concept, which considers the instan-
taneous dlmension of the element, is used. (The equations of infin-
itesimal straeins wlll be given by considering them as apecial cases of
finite straing.) The stress i1s then equal to the force divided by the
instantaneous area and the strains are defined by the following equation:

5(24)
5(53) = —d
A
J
where 7.‘,3 is the instantaneous length of a small element having the

originel length of (zj)O and 3 =1, 2, and 3. During plastic
deformation, the plastic strains at a certain state depend on the path

€8ET
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by which that state 1s reached. For the paths along which the ratios
of principal stresses remaln constant during loadlng, however, the o
octahedral shear stress-strain relation, the value of the octehedral =~~~ =~
shear strain, and the value of the principal strains are deflned

by the initial and final states (reference 15 and reference 9, P. 209);
5(e j) is then an exact differential and

1
EJ = loge zz—j% (8)

Tt should be noted that the condition under which equation (8) was
obtained is also one of the conditions under which the deformation theary
is derived; as long as the deformation theory is applica‘ble R eg_uation (8)
can also be used. -

Circulasr Membrane under Pressure

The membrane considered 1s so thin that 'b'ending stress can be

.neglected (reference 18, p. 576). Figure 1 shows the membrane clamped

at the rim and subjected to & pressure p, and a emall element defined
by A6 and As taken at redius r+u in the deformed state. In the
undeformed state, the same element would be at radius r and defined

by A6 and Ar. The instantaneous thickness of the element and the
stresses acting on the element are also shown in the figure. The two
principal stresses are O, and Og, and ¢ 1s The angle between Or

and the original redial direction.

Equations of equilibrium. - When all the forces acting on the
element in the directlon of g, are summed up, the f‘ollowing equation

of equilibrium is obtained:

Oy (r+u) h 46 - (O,+ACy)| r+u + A(r+u):] A€ (h + Ah) cos AP +

AO"
20, A8 (h + § Ah) sin ? cos® - p As (r+u) AG sin ACP

=0

When A(r+u) approaches zero as a limit, the differential equation of
equilibrium may be obtained: )
a(o rh)

(r+u) d(r+u)

= 1(%-0,,) (9)
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A cap of the membrane bounded by radius r+u and the forces
acting on it are shown In figure 2. Summing up the forces in the
z=-direction ylelds

2 _ dw '
pr (r+u)® = o, 35 2% h(r+u)
or
o L
aw 1
dir+u$} = 3 (20)
2ho,, L
plrea)| |

Egquation of strain. ~ Inasmmch as the element at radius 1r, defined
by A6 and Ar in the undeformed state, is moved to redius r+u,
defined by A9 and As, by the application of pressure p (fig. 1), by

. use of equation (B) the strains are

. €, = log, %%
€g = loge ;%E
€, = loge %i. .
Then ' '
sogfifal) e
o0 ER - (11b)
e ? - Eh; (11c)

Rotating Disk

Equation of equilibrium. - A digk of radlus b and thickness h,
rotating about lts axis with angular speed w, and an element teken at
radins r+u, defined by A6 and A(r+u), is shown in figure 3 with
all the external forces acting on 1t. Summing up all forces acting on
the element in the radlal direction ylelds .

eoeT
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. (r+u) h A6 - (cr+Aor) I + A(r+u):| A6 (h+Ah) +

o [A (r+u):| (b + 32—' Ah) sin A_ZG_ -

2 1 prt l:(r+Ar)2 - rz:l A8
® [r+u 3 A(r+u) — 5 hy
=0

When A(r+u) approaches zero as & 1imit, the following equation of |
equilibrium is obtained:

d(oLh) ’ 22 riu dr : .
4 gy = ©o ) B - P hy 22 gy (12)
Eouation of strains. - The stralins are
dlr+u
e = log, U2
U
ee = loge -T-
h
€z = loge E_I
therefore . _
€
JEr _ alrsn) _ (13a)
dr S,
€g - .
e = 2 i o R (le)
r
€z h
- D
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Infinite Plate with Circular Hole or Flat Ring Radially Stressed

An infinite plate uniformly stressed in its plane in all directions
and having a ¢ircular hole 1s shovm in figure 4. The whole system 1s
equivalent to a very large circular plate of radius c¢ with a small
ooncentric circular hole radially subjected to the same uniform stress
C  on the outer boundary. The solution obbained in such a plate within
any raedius b cean also be considered as a solution of a flat ring with
outer radius b and inner radius a, that is, uniformly loaded at the
outer boundary with the radlal stress 0y obtained in the plate
gsolution.

The equations for this case can be obtained in a manner similar to
the two previous ceges, or by simply setting dw/dr and w egual to

zere in the case of the membrane, or setting w equal to zero in the
cage of the rotating disk.

EQUATIONS OF EQUILIBRIUM AND COMPATIBILITY IN
TERMS OF PRINCIPAL STRESSES AND STRATNS

Circular Membrane under Pressure

By combinling the equations previocusly derlved the followling set of
independent equatlons, which define the problem, are obtalned:

‘= 5% (g, - 5 o) (6=)
%=3F © - %cr) (6v)
¢y =13 [- % O] \ (60)
7 = 2&( Er2+*:r €e+€ez)l/2 (sb)

T = 7(7) (3)

1383
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€r _ d(r+u) 2| /2 -
e " = S 1+ d(r+u) - (118)
€o rﬂl.
e = -r—' ) (1lb)
e€Z = E?; ] - (llc)
(r4) ?gﬂ%’ - 1(0-q.) (9)
[ aw | % 1 (10)
ey - i L §

[: zhor:l 2 1

'pfr+u5

These equations are 10 Independent relations of the 10 unknowns Cs
69: €y €85 €, 7, T, B, u, and w.

I7 equation (1lb) is differentiated with respect to r =and combined
with equation (1la),

. :je . elrte) (14)

=i

Substituting equation (10) in equation (14) to eliminate w ylelds
following equatlion of compatibility:

r g‘iﬁ = olfr-%). p(r”'“):l} - (@s)
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Equations (9) and (15) can be simplified by using equations (11) to
eliminate u and h, which results 1n

- 211/2
dc ae (€ p-€0) (€o-€z)
r —L£+0,r L= (0gC r _{zpet 7 %
T tor T = Uor) e - Zho,, (16)
and ( ) 2)1/2
. €g-€
deg (€r-€9) P 6=z
—_— - X -1 1
*&wTo=¢© i vy (a7

The ten equatlions defining thls problem are now reduced to seven
independent equations, (6a), (6b), (6c), (5b), (3), (16), and (17),
with the seven unknowhs Oy, Cgy, €4, €9, €5, T, and 7.

The solution of the problem is simplified by further reducing
equations (16) and (17) to the following forms:

> 1/2)
de - h: k
£d°r+c£ Z:(O‘-O‘)eeree)l_ 1
k /2 rk L/r 6~ r 20
d(i') . d(iE) v
y ? (18)
1/2
2
ae EL {fom%)
i— e = A(er-ee) 1l - i k = -1
r e G
(&) i )

where ‘k 1ls any axrbltrary unknown constant wlth the dimension of
length. By using the two parsmeters r/k and pk/h;, it is then
possible to solve the problem in & simple, direct way without use of
the iteration method. This fact willl be further discussed in the
section METHODS OF NUMERICAL INTEGRATTON.

-

i
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Rotatling Disk

The set of equations that define this problem are:

€, =% ¥ (0, - £9) | (62)
€e=%%(ce '%Gr) (Gb)
. e-17[:-l(c GE] (6c)
z=37| ZVrToe
1/2
7 = 2V§: (erz + €, €9 + 592) (5b)
T=1(7) (3)
e d.d§+u | (13=2)
€ . : _
e 0= THU (13b)
T
€ h
e = mm— (150)
by
T+ d.ir-zi:uS = h(ce'or) - pmzrzhi ?—-1’:-'2 a(r+a) (12)

These equations are nine iIndependent relations of the nline unknowns

O, Ogs €p» €95 €, 7, T, h, and u. If equation (13b) is

differentiated with respect to r and combined with equation (13a),
the following campatibility equation is obtained:

ro—=e 1‘9)-1J - (19)
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As in the case of the membrane, u and h can be eliminated
from the equilibrium equation (12) by using equations (13), which

yield

Idc e (- 9)

- d.r +°r1‘ = ("9-CI ) e - pwzrze(--ez) (20)

The nine equations defining this problem are now reduced to seven
independent. equations (6a), (6b), (6¢), (5b), (3), (19), and (20), with
seven unknowns Oy, Og; €5, €g, €, T, eand 7.

The solution of the problem is msde simpler by further’ reducing
equations (19) and (20) to the following forms:

ac (ex -€0) 2/r\e _(-¢€;)
L_X 1o = (Og-0p) e - p(wk)4(E) o' 2
o) kd(k> ) .
i._:"e L

ws

) J

By using the paremeters r/k sand wk
direct solution is possible for any arbitrary value of wk

to be determined by the boundary condition.

with k

Infinite Plate wlth Clrcular Hole or Flat Ring Radially Stressed

The equations of equilibrium and compatibility for this case are:

ac. - dae -
f:d(;) ¥ o;. i‘-a_(!.) (%=0r) e (€x=co)
k k . . (22)
r %o _ (€r-€p)
(%)

When equetions (22) are combined with equations (6a), (6b), (6¢c), (5b),

and (3), there are seven equations with seven unknowns.

instead of r and W, a simple

"

1383
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EQUATIONS OF EQUILIBRIUM AND COMPATTBILITY IN TERMS OF
OCTAHEDRAL SHEAR STRATN AND PARAMETER INDICATING
RATTO OF PRINCIPAL STRESSES

In the preced.ing section, displa.cemen‘ts are eliminated from the
equations, which result in seven eq_ua.tions involving the seven unknown
guantitles Cps Cgs €p» €0, €, T, end 7. The quentity €, can
be expressed 1n terms of €, an.d. ee (from eguation (1)). Two of the
four unknowns 0., Og, €y, and €g may be eliminated by using
equations (Ba) and (6b) or (7). The quantity T 1is a known function
of 7 +that is experimentally determined. The problem is then reduced

to one involving three unknowns. Obtaining the solution of the resul'b-
ing equations 1s not, however, a simple matter.

It 1s proposed that this difficulty cen be avoided by using the
following transformation:

0g0, = 3427 sin

09—01‘ =1/ 6T cos o

or

» =\l§1‘(l\l—§sinon - cos @)
g =\l%-'r (V?sina,+ cog o)

Then O, &nd Og satisfy equation (Sa). The octahedral shear stress

T, a funotlon of 7, in the preceding equations varies with r/k

and also with loading. Such & transformetlon has been used for the
1deally plastic material (T = constant) by Nadal in the section "Yield-
ing in Thin Plate wilth Circular Hole or Flat Rings Redially Stressed"
(reference 1, p. 189) and for a rotating disk (reference 2). From
equations (6a), (6b), and (23), the principal ebrains can be also
expressed in terms of 7 ani o:

(23)

€r

%,

(sin & - 43 cos a)
(24)

€ = (sin o + ‘\E cos a)

N
R
[aY]
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The equations of equilibrium end compatibility for the three
problems considered here are then obtained in terms of 7?7 and o 1in
the following form:

) (25)
prde g & _p
o5) D)

where the coefficients A;, B, C, D, E, and F are functions of Q,
7, end r/k. For the circular membrane under pressure, from
equation (18),

.

A= (\/gcos o + sin a) - (Ajgsincc-cos a,)L—"V&;—E
B = (\/5 sin o - cos a)(;y‘_—% - Z—%)%—

- 3 (V3 sin o + cos @)y o|1/2

3 2 " 2 /ok
C = 2(cos w) e(- g7ee® |y | Qf_ — "2 (E) <%I>
6_1'2 (»\/E sin o - cos @) >
D=(n\[3_sin>oc-cos a) ¥ B
E == (43 cos o+ sin o) _ _
z | ’\/g (\fg sin o + cos o)y 0 2 1/2
J o (o)  GNE 2 (2
= - 1 -

¥ ZI\/E * © 61'2 (‘Vg gin o - cos cb)z(k> hi J

(26)

1383
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For the rotating disk, from equetion (21),

\
A=(’\[§cosm+sina.)-(ﬁsinm-cosm)"—-f\’—?_:—&
- Coos (28T _zsina)l
B_(/\/_S-sinm c°8°°)('rd_7 VE )7
7
‘)’cosc:) —gin
= (\/— 21 /x
C = 2(cos @) e »\/—p((uk) "F E) e \2 P (27)
D = (/3 sin a - cos a) 7
E=-('\/_§cosa.+sina.)
F =2\ 1-e\j2 p

For the infinite plate with a circular hole, from equation (22),

A=(/\Ecosm+'sinm)-(\Eaina-cosc,yl%.—“ )

- (45 otm o - com o (187 - LER S |

. z(cos m) (f? cos oa) ‘ - f (28)
D= (A3 sina - cos a)y

E = - (4/3 cos o + sin @)

AT I |

With these trensformations, the solution of the problems is reduced
to simply e numerical integrastion of the two simultaneous differential
equations (equations (25)) involving the two unknowns 7 and @,
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Furthermore, the parameter 7, belng the octahedrsl shear strain, *
dlrectly indicates the stage of plastic deformation at any point under

any load. (In plastic problems, according to the deformation theory, the
individuel stress and straln distribution cannot give as clear a picture

of the stage of plastic deformation as can the octahedral shear strailn. )
Also, the parameter o Indlcates the ratio of the principal stresses or
stralns. At any point, if o remains constant during loading, the ratilo
of principal stresses at that point remains fixed. The value of «
obtained at each point in the calculation during loaeding directly indicates
whether or not the deformation theory is applicable to the problem.

1383

The value of o is known at the boundaries or the center. From
equations (23) and (24), in the case of a circular membrane under
pressure,

when I‘/b = O,
O'r = Opg
a=2%=1.5708 !
2
when r/b =1, r
€g =0
o = %ﬂ = 2,0944

In the case of a rotating disk without a hole,

when r/b = 0,
Op = Og
o =%=1,5708
(<)
when r/b = 1,

Or=0

o= %= 0,5236
6
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In the cage of a robating disk with a hole,
when rfa =1 end r/b =1,
GI‘ =0
a = T = 0.5238
6
For the infinlite plate with a cireular hole,
when r/a =1,

=0

s

a=%= 0.5236
6

When r/a. approaches c/a or & value large compared with 1,
Cr = Og

b1
& === 1,5708
2

EQUATIONS OF EQUILIBRIUM AND COMPATIBILITY FOR INFINITESIMAL STRATN
IN TERMS OF o AND 7

The final forms of the equillibrium and compatiblility equations for
the case of small strainsg are given in thils section. The concept of
infinitesimal strain is defined as follows: The change of dlimensions are
small compared with the original dimensions, but are large enough so
that the elastic straln can be neglected. The equations presented can
be obtained eilther by direct derivation as was previocusly done or by
reducing from the equations for finite strains through expanding the

ef(%7)  teyms 1n series and neglecting the small termg: For infini-
tesmal strain, the coefficients (functions of o and 7) 4, B, C,
D, E, and F in the precedlng equatlions are denoted with a super-
script prime in similer forms, but the coefficient (functions of o and
7) are simpler then those for large strain.
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dc r &y
At E +B' &L o
k d(Z‘. k a(z)
k k
1 £ do t ¥ dy = !
D kd<£>+E de.l.'. F
k k

For the circular membrane under pressure,

A' =4/3 cos o + sin o

B' = (l\/gsinc:,-cos a) %%—

C'=écosou ?

D' = (\/E gin @ - cos )7

E' = ~(\/3 cos « + sin «) 2
2 or

F'=zﬁycos a+f2_ Lk

6 |T(z/3 sin o - cos @) J

For the rotating disk, -
A' =43 cos @'+ sin @ w

T
B’=(ﬁsina-cos a)%g‘-—y

2 2 fr\2 1
g!' =2 A mygf= Kk = -
cos ‘/;p(w)(k)T >
D' = (‘\‘/3 sin o - cos a)y

E' = -(af3 cos @ + sin a)

2\/3? (cos o)y J

|
i

NACA TN 2217

(29)

(30)

(31)

1383



28ST

NACA TN 2217 i 2l

For the infinite plate with a circular hole, -

A' =A3 008 @ + 8in o - \
B' = 3 sin @ - cos a) = &L

OE LE
C'=2cos o

> (32)

D' = (N3 sin o - cos )
E' = -(4/3 cos @ + sin )
' o= 2\[3 (cos @)y ' J

METHODS OF NUMERICAI, INTEGRATTON

Two methods are developed to solve the differential ecaations (25).
In the. firet method, the differentlal equations are numericelly integrated
along r/k, which is considered the independent varisble. In the second
method, o Iis considered the independent varieble. Because many terms
in the equations are trigonometric functions of o, +he use of o as
the independent varisble considerably reduces the work of computation.

Numericel integration with r/k a8 independent varisble. =~
BEquations (25) can be written in the Pfollowing forms:

r do _ CE-FB

k r AE=-DB
af=
)

(33)

r 4y _ FACD

karz EA-BD
(&)

For the case of small strain, the terms 4', B', ¢', D', E',
end F' are used in equation (33) instead of A, B, C, D, E, and

F, respectively. If at any point « and 7 are known, 67‘_1.%;7 and
r
4y can be calculated by equations (33). At the boundaries or the

dzr-/-ks

oenter, o 1s known, but 7 1s o be determined by the load. Only
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one value (unknown) of 7 corresponding to a particular load exists
on each boundary. It is therefore difficult to start the numerical
Integrations on the boundary with the correct value of 7 corresponding
to a glven load. Also, in plastic problems covering the strain-
hardening range, the method of superposition is invalid. Usually, a
method of iteration is used to solve the problem (for example, refer-
ence 3). In the method presented herein, an arbitrary but unknown
constant k has been introduced in equations (18), (21), and (22). For
the cases oonsidered, the terms in the equations that involve load are

2
always multiplied by r, 8o that <§§)2 can be written as <§§)2 (%)
in equations (18) and (26) and (wr)? as (wk)@ (E) in equations (21)
and (27). k

The mumerical integratlon cen then be started at the inner boundary
(or at the center 1f there is no circular hole at the center) by using
the known values of oy, @ desired value of Yo, &nd arbitrary value

of <§§) for the membrane or of (wk)2 for the rotating disk. The

numerical integrations can then be carried oub, obtaining values of o«
and 7 at dlfferent values of r/k, until o progressively readhes
the value that satisfies the other boundary condition. Because the
value of » 1is known at the boundaries, the value of k can be
determined for the selected value of 7,. The number of points and the

formules used in the calculation depend on the accuracy required (ref-
erences 19 and 20). It has been found that if the formula for evaluat-
ing definite integrals 1s applled after using the forward integration
formula (references 19 and 20), high acouracy cen easily be obtalned.

The procedure used herein to obtein solutions is the same for each
problem. Celculations are started from the inner boundery (or from the
center if there 1s no cirocular hole at the center) with the known value
of ag, the deslired value of  7,, and the arbltrary loading term. The

parameter oy is equal to =x/2 at r/b = O for the membrane and for

the solid rotating disk and is equal 4o =/6 at r/a =1 for the
infinite plate with a circular hole and for the rotating disk with a

2
hole. The arbitrary loading terms are <§§> and  (wk)® for the
ch
membrane end the rotating disk, respectively. Then [éT%$EY . and

x i7k:]o, corresponding to a, and 7y, &t the inner.boundary or the

$BLeT
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center, are obtained from equation (33). The following formmlas for
forward integration are used to determine the first approximate values
of o and 7 at the next point (a.l* and 7]_*)

_ L 3\
0¥ = ag + L(§>1- (i‘_)o aa |

l
Mo
—
]

|
(o]

(34a)

3

SR [GRIG)

&

A~
s

Mo ) .

By substituting cr._‘_* and 71?“ into eguation (33) , approximate values
[_9-;_ and l:—gzjl are obtalned and the second e.pproxima'te values
£) z)

of a3 and 73 (o ** and 7,%¥) cen be computed from the following

formulas : w
ao | ¥

HE. - @), 4,

al-x-x-

> (34b)

*

w10, - @) [

The values of o ** and 7,%* are substituted into equation (33) again
in order to caloulated the values of d-: and [.9“_;_ . By use of
| ()|, 5

the following formulas for evaluating d.efinite integrals, the va.lues of
@ and ¥, are calculated:

S
= ag ]_;Fg - [T da + da
i Gl e
i} 2 (540)
A RN iy
| _ o 1
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This procedure, K ls applied to the next point, and so forth, untll the
value of o reaches the required value of &, at the outslde boundary

(o = 2/3 % &t v/b =1 for the membreme, o, ==x/6 at r/b =1 for
the rotating disk, and o, = n/2 at r/a = c/a for the thin plate
with a circuler hole). Inesmich as

X =

...) =2
G
the loading terms are determined as follows:

k S b é
= (B (2 33a
(h:L) <k> (33e)

FPor the rotating disk, : .

b)? = @o)? (B) (530)"

For the wembrane,

For the infinite plate with & ciroular hole,
70
€ - ——
- Ty T 242
tg = b ( = )c Chye Onge W2 (330)

or for the flat ring radlally stressed at the outside diameter Db,

7
- —= (8in o - 45 cos Oy )
By = @)y By (), = @)y e 2HE (s32)

where ‘1, énd ty, &are the temsilon per unit original cirqumferential
length at r=c¢ and » = b, respectively.
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Numerical integration witk a as independent variaeble. -

Equations (33) can be written in the following forms:

4y _ FA-CD
da CE-FB

(35)

“{£)
k/ _ AE-DB r
do CE-BF k

By using equations (26) to (28) and expanding et 7) into a series,
the following equations are obtained: -

For the circular membrane, from equations (26),

art r bk W
CE-BF = 2GJ - [:2:\/—5&,]' g(ct.,')', ‘7"—_5.-7—,-) fl(dl,7) + 2 ’\ﬁ{l J(@’?JEJE>
AF-CD = 2 A2L - 2HT 7 = 2 2L £5(q,7) ;J(a,zv%,flk-;) f (36)
AE-BD = 12 - 3% g(a,7,L &L
75T &y J

For the rotating disk, from equations (27),
ar Ex 1r\2
CE-BF = -2HL - 2 ‘\/EHJ S(a':')',% d._T') f1(a,7) + L T (E) f3(a':7)

Kp ;p\2
AF-CD = {SHZ - 2 A\3E [:1 - fl(m,‘)')J P = (§) fs(ow} 4 (37)
2 arT o
AR-BD = 12 - g(a,?,?r- éfy')
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For the infinite plate with a circular hole, from equetions (28), '
¥ & )
CE-BF = -2HL - 24[385 g a7,-—7- £ (o, 7) 2
i
AF-CD = {BHZ - zl\[-m-_, 1 - fy(a, 72} ? (38)
2 7 4T
AF-BD = -d Qy Y g = —
8< e d7> J
where
G =s8ina
H =cos &
J =‘\/§sinou-cos o
L 3cos @&+ sina
- (8) | '
hy '
K, =»\/—§; p(uic)
and

-F:(cos a)y
£1(2,7) = > 1-0 12
,,.E(cos a)y

1l |3 1 2 2
- -Z-J;-(cos a)y + glcos® a)y® - . . .

3
- E(oos a)y
fz(u"')') = e

- ,ng(cos a)y + ']é-' X g—(cosz a)yz - %ﬁ(coss m)?’s e e

-,\]—g—(cos a)y £;(a,7)

n
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2

f3(c‘) 7) = ev-

8in «

=1

+

1 1/ 1 2.2  1/{ 1 )33
— slnaly+ =[——=—8Ina)® 7 + 2| =sin o F oo e
(ﬁ ) Z(VE ) 19 7

s(, Zd"’) 281 | ,‘/3’7. 7
Td" T & a Vgsina.-cosa.

- 1/2
J(@,?‘,E,Ek;)= 1 - e’\/_')'(l\/g sin & + cos or.)( ) >
k' hy B 672 (A3 sin @ - cos a)? \K (hi
— 1/2
»\2 Tz(a,7)
- 1 - 2 (5 2oy

The symbols G, H, J, and I are trignometric functions of «
only;” Kl and K, ere constants during calculation. The symbols

fi15 f5, £z, end g are functloms of « end 7; J is a function

r
Of a’, 7 r] E.D.d. ‘E‘ .

This method 1s used herein in the solution of an infinite plate
with a circular hole. The procedure of numerical integration 1e
similar to that used in the first method. The first four terms of the

gseries of ef(or,,’)') are used; the accuracy of the result is the same
as that in the first method, with a reduction of one balf in computation.

Both methods presented herein é.re used to obtain the solutions for
the glven values of 7o The purpose of the present paper is to obtain

solutions for the entire strain-hardening range and the me'bhod.s developed
are very convenient for this purpose. If, however, a solution for omly
a particular velue of loading is requirea. it can be obtained by inter-
polating between values obtalned from two or three soclutions correspond—
ing to loadlng near the specified value. :
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NUMERICAL EXAMELES -

Membrane, - In order to compare the results obtained by the method
developed herein to those obtained by Gleyzal (reference 3), one numeri-
cal solution for infinitesimal strain is calculated by using the T(7)
curve of the tensile test in figure 1l of reference 3. Inasmuch as
reference 3 states that: "For simpliciby, strain will be taken to mean
conventionsl strain (ds-ds,)/d8, where ds and ds, are final and

initial arc length, respectively.", equations (29) and (30) for infini-

tesimal strelin are used. The calculation is started at »/k = 0.005.
Values of o = 1.5708, 7, = 0.0299, and pk/hy = 55,920 are used.

1383

Roteting disk. .- Numericel solutions for finite strain (equations (25)
end (27)) are calculated. The T(7) ourves of two materiasls, Inconel X

and 16-25-8, are plotted in figure 5(a). These date were supplied by

W. F. Brown, Jr., H. Schwartzbart, and M. H. Jones. The same T(¥) curves

are plotted on logarithmic coordinates in figure 5(b). These materials,

Inconel X and 16-25-8, of which T is not a power function of 7, were

chogen so that more generel information can be obtained. It should be

mentioned that the given octahedral shear stress-strain curves (fig. 5) .
of these two materlals have not been corrected for the triaxiality and
nonuniform stress distribution introduced by necking, and consequently

do not represent the exact stress-strain relatlon after necking of these ’
two materials. The solutions obtained from the T(¥) curves of the

tensile test after necking can, however, represent the solutlons corre-
gponding to materials having the exact T(y) curves shown in figure 5 and

for simplicity the materials are herein still referred to as Inconel X

and. 16-25-6, '

In each case, the calculation 1s started at x/k = 0.005, ag in the
case of a membrane.

‘Phree solutions are also obhbalned for a rotating disk with a central
hole, using Inconel X. Csalculations are started at r/a = 1.
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All mmmerlical examples sxe given in the followlng table:

Solid rotating disk

Material 7o Fg p(wb)2
_Tnconel X 0.04 1 x 10°
.J1152] 1 x 105
.30 1 x 10°
16-25-6 0.04 1 x 105
Jd152] 1 x 109
.30 J2.5 x 10°

Rotating disk with central hole

Material 7o E plw 8-)2

Tnoonel X | 0.30 1 x 10%
.30 2 x 10°
.30 4 X 1

Infinite plate with ciroular hole. -~ The calculations for this -
problem are carrlied out for the case in which On,=0 at r/a = 1.

The valvue of a, at r/a = 1 is then 0.5236. (For other cases where

O, is different from O at r/a = 1, the corresponding value of a,

should be uesed.) The same materials as in the previous problem sere
consgidered. The numericel exemples are:

Material %o

Inconel X 0.04
.1152
.1871
.30

16-25-6 0.04 . o T
.1871
.30
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RESULTS AND DISCUSSION

The radial and circumferential stresses o, and 0g, respectively,

obtained for the case of & circular membrane are plotted ageinst r/b

in figure 6. Two curves, taken from reference 3, corresponding to
calculations for about the same pressure used in the present calculatlon,
are Included In the flgure for comparison. In the present caloulatlon,
the T(7) curve given in'figure 1 of reference 3 and the same
infinitesimal -gtrain definlition based on the original dimension is used.
In order to be consistent, the initilal thickness hy; 1s also used in
the calculation rather than the instantanecus thickness h, which is
used in reference 3. : ;

The varlations of o with the radiusg for the rotating disk and
for the infinite plate with a circuler hole for different loads and
materials are plotted in figures 7(a) and 7(b), respectively. The vari-
ations of « with 74 (or loading) at various radii for the rotating
disk and the infinite plate with & circular hole are plotted in
figures 8(a) and 8(b), respectively. Similar curves for the ratio of the
principal stresses c&/oe are shown in figures 9(a), 9(b), and 10. When

figure 7 is compared with figures 9(a) and 9(b), 1t is seen that the
variations of o wlth radius are very similar to the variations of
0./0g with radius, elthough the relation between o and 0,./0g 1is mot

linear.

Exemples for e membrane with a large straln are not calculated

hereln, because the result of reference 3 is sufficlent to give an approxi-
mate variation of .the ratios of principal stresses along the radlus during
loading, although the infinitesimal-straln concept is used. The variations

of the ratio of principal stresses with redius for different loads, bhased
on the values of O, and Op given in figures 8 and 9 of reference 3,

are calculated and plotted on figure 9(o).

The values of O, are plotted agalnst Og at different radil

undeyr different loads for the rotating disk and the infinite plate with
a cirocular hole in figure 11. The bheavy solid and dashed curves

represent the values of O, and Og at different radil for any given

load and are called loading curves. The loading curve moves away from

the origin with increasing load. The light solid and dotted lines con-
necting the différent loading curves at a gilven radius and extending to
the origin represent the valuss of Or and Oy at different loads for

any given redius and are called loading paths. Also shown 1n the fig-
ures are the ylelding surfaces, which are ellipses under the deformation
theory. ’
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A clear picture of the varlation of the ratios of principal
stresses in this group of problems with different loads and with
different materiels i1s given in figures 7 to 11l. It is evident that
the ratios of principal stresses remain essentially constant during
loading., For this group of problems, the deformation theory is there-
fore applicable and €3, defined by equation (8), represente the true

strelin and is determined by the final and initial states.

The variations of 7y and 7/7, with radius are plotted in figures 12
and 13, respectively, for the rotating disk end the infinite plate with
circular hole. It is interesting to note that the curves in figure 13 for
different loads for the same materlal are quite close. The curves for
different materlals on figures 7 and 9 are alsoc close, but are not so
close in Pigure 13. ° '

The distributions of principal stresses and principal strains along
the radius for the roteting disk and for the infinite plate with a
circular hole are plobted in figures 14 and 15, respectively. For
comparison, the variations of Op/(0gly, €o/€gly, and 7/7 with

radlus for both the elastic and the plastic range are plotted in fig-
ures 16 and 17. (The equations for the elastic range are given in the’
appendix.) If only the stress distributions for the elastic and plastic
cagses are oompared, it is seen that the stresses are more uniform in the
plastic state; bubt if the distributions of the principal strains and the
octahedral shear strain for the elastic and the plastic cases are
compared, it is evident that & less-uniform strain distribution is
obtained in the plestic state. It is of special interest in the case

of the finlte plate with a hole to note that with plastic formation, ST
the stress (tangential stress)} concentration factor around the hole is
reduced, but instead there iIs a high concentration in principal strain
and in octehedral shear strain. A simllar conclusion regarding con-
centration factor around a circular hole in a tension panel is obtained
in references 21 and 22.

The quantities Og/(Og)es Op/(0n)os €x/(ex)o, and €g/(€g)o
along the radius for a rotating disk and 09/(06)0 and ee/(ee)o for

an infinite plate with a clrculer hole are plotted in figures 18 and 19,
respectively. The curves representing 0,/(0,),, €y/(e,),, and

€o/(€g), For different materials and different values of 7, are close
together; but the curves of Ge/(ce)o are quite different for different

materials, as well as for different values of 7,.
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The relation between load and maximum octahedral shear straln 7,
of the rotating dilsk and the infinite plate with a hole are plotted in
figure 20. The terms -p(wb)2 and +t,/hy are designated the load for
the roteting dlsk and the Infinite plate with & hole, respsctively.

It is shown 1n these figures that the load increases considerably for
Inconel X when the value of 7, increases from 0.04 to 0.30, whereas the
load for 16-25-6 increases only slightly.

In figures 7, 13, and 16 to 19, it is shown that in the case of the
plate with a hole, the variations of a, 7/7,, €p/(ez),, and ¢€5/(eg),
with redius are essentially independent of the value of 7, of the plate
and the T(7) ourve of the meterial, at least within the renge of T, 7
varietion enclosed by those values of the two materials used. From these
results, it can be seen that the deformetion that can be accepted by the
plate before feilure depends mainly on the maximum octahedral shear strain
(or ductility) of the material, which would not be true if the strain
distributions were & function of the T-y curve. In the case of the
rotating disk, however, a slight effect of 7, and the T(7) curve is

apparent on the straine; this effect seems to be caused by the body-
force term of the disk.

The stress distribution that will determine the load the member can
sustalin 18 now considered., From flgures 16 to 19, 1t can be seen that
the variations of Og/(Cg), with radius depend upon the T(7) curve of
the materlal and on the value of 7, of the member. From figure 20, it
is also seen that the load depends on the T(¥) curve. It therefore

follows that the added loed that the member can sustein between the onset

of yielding and fallure depends on the T(¥) curve of the material. The
octehedral shear (or effective) stress and strain curve of the material
should. therefore be used as & criterlsn in selecting a material for a
certain member under a certain loeding condition, because consideration

of the maximum octahedral shear strain of the material alone (or ductility
alone) is insufficilent. )

The veriations of o, ¥, O,., Op, €5, €5, and 7/7, with

radiug of three roteting disks with a hole are shown in figure 21. These
three dleks have the velues of ratlos of outer and ipner radius b/a
equal to 5.32, 12.45, and 28.12, respectively. The tangential stress

Og, %+he tangential strain €5, and the octahedral shear straln 7 are

mich less uniform then in the case of a s0lid rotating disk. The ratlo
of maximm and minimmm octahedrasl shear strain 70/7b is equal to 7.41

for a disk with b/e = 5.32, equal to 11.75 for a disk with b/e = 12.45,
and equal to 14.1 for a disk with b/a = 28.12; for a solid disk of the
same material, the ratio 70/7b is about 5.3.
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The values of the load, defined by p@nb)z for rotating disks
having different ratios of inner to outer radius a/ﬁ are represented
by the solid curve in figure 22. These disks were made of Inconel X
and reach the same maximum octehedral shear strain 70 = 0.3 &t the

inner radlius of the disk. The dashed curve in the same figure is
obtained by extending this solid curve toward a/b =1, where the value
of p(b)? can be determined by considering & rotating ring with
a/b—1. The figure indicates approximetely how the losd p(wb)2

varies with different disks having different ratios of inner and cubter’
radiug and reaching the same maximmm octahedral shear straln at the
inner radius of the disk. The value of p@ﬂb) for a solid rotating
dlsk made of Inconel X with Yo = 0.3 at the center of the disk 1s also

indicated in the same figure.

The preceding results and dlscussion were obtained for the plane-~
stress problems with axiel symmebyy in the stralin-hardening range in
which the elasbilc strains are negligible compered with the plastic
gtrains. Whebther these results and discussions are true for general itwo-
dimensional or three~dimensional problems, or for the problems involving
the region in whioh elastic strain is not small compared with plastic
strain, or for pertly plastic problems, can be determined only by a
detalled. analysis of each case.

CONCLUSIONS
The results obbtained in the cases of a membrane, a rotatling disk
wilthout and with a hole, and an infinite plabte with & hole in the strain-
hardening range of two materisls, Inconel X and 16-25~8, whose gtress-
strain relations do not follow the power law, show that:

(1) The method developed not only accurately solved the plane-

plastic-stress problems with axial symmetry in a simple menner, but also

gave a clear plecture of the octehedral shear straln and the ratio of
principel stresses during loading.

(2) The ratio of the principal stresses in such cases remained
esgentially constant during loasding and, consequently, the deformation
theory is applicable to this group of problems

(3) The distributions of principal strains, and octehedral shear
strains, on the plastic state are less uniform than those in elastic

state, although the distributions of tangentlal stresses appear more uniform

in the plastic state. The stress concentration factor around a hole is
reduced in the plastlo state, but instead there is a high concentration
of principal strain and of the octahedral shear strain.
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(4) The ratios of the strains along the redius of their maximum
value' are essentially independent of the value of the maximum octahedral
shear strain of the plate and the octashedral shear stress-strain curve
of the material. Hence, the deformation that can be accepted by the
plate before fallure depends mainly on the maximum octahedral shear
strain (or ductility) of the material.

(5) The stress distributions depend on the octahedral shear stress-
strain curve of the material. Hence, the added load that the member can
sustain between the onset of yielding and fallure depends meinly upon
the octahedral shear (or effective) stress-strain ourve in the strain-
hardening range of the material.

Lewils Flight Propulsion Laboratory,
National Advisory Committee for Aeronuatics,
Cleveland, Ohio, February 28, 1950.
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APPENDIX

EQUATTONS FOR ROTATING DISK AND INFINITE FLATE WITH
CIRCULAR HOLE TN ELASTIC RANGE
Rotating Disk

For a solid disk with the radisl stress at the periphery (r = b)

equal to zero, the principal stresses can be expressed in the following
equations (reference 23, p. 68):

g, = %" p(ﬂz (bz-rz)

r
(39)
0 = B2 i - B g2
vhere V 1is Polson's ratio.
At r =1,
(0.) = = paRp2 (1-V)
8’b T 2
Dividing equation (39) by (Og), ylelds
Or _ 3 1 _(;)2
(Ogly, 2(1-V) \b
> ' (398)
S - 3+v 1 - 1+3v :_1:_-)2
Gg)y, 2(1-D) 34 ('b J
The stress-strain relations of plane-stress problems in the elastic
range are:
e = 5 (0p=00p)
1 (40)
€ = 5 6o-v0y)
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where E 18 the modulug of elasticity in tension and compression.

Substltuting ‘equations (39) into equations (40) ylelds:

. ™
c .8J;E- (1-v)(5+v)(pu?b2) si:v <’0 ]

~ ? (40a.)

1 2 1 2
= (1-v) (3+v)(p<nzb Y1 - % %) _)

or

1

& _ 3 _ 3(1+ ¥ 2
(g)y ;v g é*':: ) <%)]
- o ? (40b)

9 _ 34w -; - Liv/r\2
(Ee)b 2 B 3+v (b)] y

The equetions for the octahedral shear stress and strain given by
equations (4a), (4b), and (Sa) can be applied to both the elastic end
the plagtic range, but equation (5b) is true only in the plastic range.
The octahedral shear strain in the elastic range can be calculated by
equation (4b) or simply by using the following egquation:

Substitute equations (39) in equations (41) to obtain:

: 1/2
7 = y—zg (lw (0®6?) | (3+1)% - 4(24v) (3+v) (%'-)2 + (7+20+7%F) (%)4]

(41s)
or

1/2
- srigy |37 - a@ea () (2F + (mzmen?) (2)* (41b)
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and

<
]

0.29 for Inconel X (reference 24)

v = 0.286 for 16-25-8 (reference 25)

Infinite Plate With Circular Hole

For a uniformly loaded infinite plate with a circulsr hole, the
principal stresses are (reference 23, p. 56):

A
o, = 5 + 2C

r r
(42)
=4
) + 2C
e = rz

where 4 and C are arbitrary constants. For the case considered
herein, the boundary conditlons are:

0 a2t T

G

]
o

r

o, = (0,)y at r

fl
o'

These boundary condltions are used to determine the arbitrary
constants A and C, which yield T

c. (@ )b (i')z-l\
’ l"(z?) (&)
)b (r)+l

2

l'(a) ()

(422)

Cp =
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7 2
% _ 1 (£)
e (1

Substituting equations (42a) into equations (40) ylelds

¢ =& ©p)y (1-7) (g')z - (+v) )
- 2 2
Sy ®
o1 O (1) (g): + (1+9)
l'(%) ('E) y,
or
(e GE) - )

(eg)y, [(1-1:) + (1'*”)(%)2] (g_)z

o () () + o)

(ee)b =

I

NACA TN 2217

(42p)

(43)

(422)

1383



1383

NACA TN 2217 . . - 39

Substituting equations (42a) into equation (41) yields

oxr

£>4+3\l o

_ 242 (14v) ©x)p (a

3E l‘(%)z (§>4J (44)

4 1/2
. (2) e
7 I P
’ E*s(f)](a')
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Principal stresses, 0,, Oy, 1b/sq in.
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Tangential stress, Oy, Ib/sq in.
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Tangential stress, Ty Ib/sq in.
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Principal stresses, Op, Og, 1b/sq in.
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hole,
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